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In many materials the stress o (deformation e ) at a given instant 
of time depends in a complex way on the entire previous history of 
deformation (state of stress). These properties are taken into account 
by the Boltzmann-Volterra memory theory of elasticity, which in 
the case of a uniaxial state of stress is based on the two integral equa- 
tions [I] 
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a(t l  = E c o [ e ( t ) - - - ~  S f(t--t')e(t')dt" ]. (1) 
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t 

Here, ](t  - t ')  is the relaxation kernel, and its re~olvent ~o(t - t') is 
the aftereffect kernel; E~, is the modulus of elasticity, J~, is the com- 
pliance at a time when none of the relaxation and aftereffect pro- 
cesses has yet been realized, and x is a coeffieient that depends on 

the specific form of the kernels. 
The basic problem of the memory theory of elasticity is to 

determine the form of the relaxation and aftereffect kernels. 
For this purpose it-is customary to use exponential functions or dis- 
crete and continuous spectra composed of such functions [2]. These 
kernels permit a quite accurate description of many properties of 
actual bodies and, in particular, account for the temperature-fre- 
quency dependence of internal friction of the relaxation type [3]. 
However, the exponential kernels do not have the singularity at 
t - t '  = 0 that is observed experimentally in static tests [4]. In this 
connection it is worthwhile to investigate some typical examples to 
discover how this singularity affects the dissipative properties of the 

medium. 
In calculating the internal friction it is a matter of indifference 

whether we specify the relaxation kernel or the aftereffect kernel, 
since in the general form they are related by a simple expression 
which is easily established by rewriting Eqs. (1) and (2) in transform 

space 

~** -- Eec [i - -  z / ,  (p)l e** , s**:=doc[I + z ~ , ( p ) ] ~ * * .  (3) 

Here, a single asterisk denotes the unilateral and a double asterisk 
the bilateral Laplace transform. Equations (8) yield the following 
relations between the Laplace transforms of the aftereffect and re- 

laxation kernels 

/ ,  (p) = +,  (p) [ t . -  •  (p) ] - , .  ~ ,  (p) = l ,  (p) [ ~  - -  ~ / ,  (p)]-~. (4) 

In transform space the Boltzmann-Volterra equations are analogous 

to Hooke's law, the only difference being that the elastic constants 
are a function of the complex parameter p of the unilateral Laplace 

transformation. 
In order to investigate elastic-memory media in periodic defor- 

mation it is sufficient to/rewrite the elastic constant of Eqs. (3) in 

Fourier space p ~ iw 

E : E=o it --z[, (i(o,)1 = E ' - -  iE",  

d = y ~  [1 + • (i~0)] = ~' - -  i J" .  (~) 

Thus, the elastic modulus and compliance (5) are complex 
numbers. After multiplication by e and o, respectively, the real 
components eE' and oJ' are those parts of the stress and strain that 
vary in phase, while the imaginary components ~E" and oJ" have 
a relative phase shift of 90 ~ . The presence of phase-shifted com- 

ponents determines the dissipative processes in elastic -memory media. 
The energy losses (internal friction) are given by the mechanical 

loss factor 

tg 6 == [ '"/E'  = J " / J ' .  (6) 

The calculations that follow have been made for the complex 
compliance. 

1. In accordance with Eqs. (5)-(6) with x = AE/E r a = AJ/Joor o 
the exponential kernels f(t) = exp (-t /~ 's) ,  ~o(t) = exp ( - t / T  o) lead 
to the well-known relations for a standard linear solid 

J '  = .rot -~ AJ (1 + c9~'%9 -I, J "  = A] ~0x a (1 + o~aD -x , (7) 

tg 6 = AAor~ (Jo + Jcom~az) -t , (8) 

(AJ = 4 - -  Joo, AE = ~ o  - Eo).  

Here, J0 is the relaxed and J~o the unrelaxed value of the compliance; 
r o is the delay time, which is related with the relaxation time r s  by 

the expression 

T , / ' %  = l ~ / J o  = EolEoo" 

Expression (8) describes the peak of the relaxation internal fric- 
tion, which reaches a maximum at 

~o~o ] / Y j / ] o  = t. 
We note that the same formulas are easily obtained from the fol- 

lowing theological equation: 

d o (a + "~ de/dO = s + "r z de/dr, (9) 

if we assume the harmonic variation of o and ~ with time. 
2. An example of a kernel with a singularity at the instant of 

loading is the aftereffect kernel proposed by Duffing [5] 

(0 = t~-I (0 < ~ < t). (10) 

Here and in what follows 
A3 AE 3co E0 {T~\x ( i i )  

- J o y , J -  e o j J  ' J0 - E,o - ~ ) ~  " 

Substituting (10) and (11) into (3) and going over to (5), we obtain 
the following values for the real and imaginary parts of the com- 

pliance: 

J '  = J r  + A I r  (7) ( ~ ) - ~  cos~ , 

d "  = A J  F (?)(olr j  "-~ sin ap (~P = Vs~u (12) 

The mechanical loss factor 

t g  6 - -  A t E  (7) s i n ,  (13 )  
doo (o'r + AJP (T) cos ~b 

The Duffing aftereffect kernel is equivalent to the theological 
equation with fractional differentiation with respect to time [6] 

r (~) AJa + JoT~YdY7 / dt "r = "r / dt x , (14) 

where 7 is the order of the fractional derivative. Correct to the con- 

stant, Eq. (4) is the Maxwell model with fractional derivatives and, 

as 7 ~ 1, J0 ~ ~ '  is transformed to the usual Maxwell rheological 
equation. 

Equations (12)-(14) contain the gamma function F(y), which 
we can eliminate by taking the kernel in the Abel form 

q~ (t) = t~-l/r @). 

3. The aftereffect kernel proposed by Rzhanitsyn [7] combines 
the properties of both the kernels considered above: 

tp (t) = t u exp (-- t/'ru) (0 < ? ~ 1). (15) 
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When y = 1 we obtain the standard linear solid, and as r o ~ ~o the 
Duffing kernel. 

Using kernel (15) in (8) and (5), we obtain 

J '  = loo ,-}- AJ (1 -l- m2T ~)-'/'~ r (7) cos~ , (16) 

g "  = AJ (1 + 0f'%2) -'/~Y r (7) slurp, 
-- 7 arc tg (eTa). (17) 

The mechanical loss factor 

A J r  (T) sin 
tg 6 = J ~  (1 + co~o~)'/'v ~- A J r  ('r) cos ~" (18) 

Figure la  is the vector diagram of the complex compliance in 
relative units, 

f ' = i " ( / 3 ,  / ' ~ ( J ' - - J o o ) / A J ,  / " = J " / A J .  

We have taken the quantity y as a parameter. As may be seen 
from Fig. 1, the curves are a synthesis of an arc of a circle (y = 1, 
standard linear solid) and a straight line leaving the origin at an 
angle Try/2 (Duffing and Abel kernels). Obviously, as the para- 

meter y decreases, the straight-line segment of the curve increases. 
It is important to note that the presence of the gamma function 

FO, ) in (16) and (17) leads to the curves intersecting the axis of 
abscissas at different points, namely, at the joint j '  = F(y). In 
order to describe the relaxation at internal friction for a given modulus 
defect the curves in the vector diagram must start from the same 
points, and therefore the Rzhanitsyn kernel should be taken in the 
form 

(p (t) = (tY-t/r (?)) exp (-- tl~z) , (19) 

i. e . ,  with a correction for the gamma function F(y). The situation 
is analogous to that which exists between the Duffing and Abel ker- 
nels. The choice of a kernel in form (19) makes it possible to el im- 
inate F(y) from (16)-(18), i . e . ,  to set F(y) = i. The correspond- 
ing diagram is given in Fig. lb. The only difference from the pre- 
vious diagram is that as wr o -~ 0 all the curves converge on the 
same point j '  = (J' - Joo )/AJ = 1. For kernel (19) it is possible to 
write the following equivalent theological equation: 

e = J ~  ,- h J  (1 -~'%d/dt)"~5. (20) 

In order to construct the frequency dependence of the internal 
friction tg 6 it is necessary to specify the modulus defect (compli- 
ance) as a parameter. However, the energy losses are proportional 
to the phase-shifted part of the deformation (stress), and the internal 
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Fig. 2 

friction curve is close to the curve representing the frequency de- 
pendence of the quantities J" or E". Therefore in obtaining quail- 

] '  

Fig. 1 

b 

q~ (t) -- t "c-1 

and using Eqs. (4) we easily 
kernel 

I U) : t':-i 

tative information about the dissipative properties of the media it 

is possible to confine oneself to an investigation of the frequency 
dependence of the imaginary part of the compliance (modulus). The 
in-phase components J" and E" are the dynamic characteristics of 

�9 2 

Fig. 3 

the corresponding quantities. The relaxation time rg and the delay 
time r o are the material characteristics, which usually depend 
exponentially on temperature but do not depend on the frequency ~. 

Figure 2 illusrxates the frequency dependence of the real j '  and 
imaginary j" components of the compliance. It is clear from Fig. 2 
that a decrease in the parameter y lowers the peak of the quantity j"  
and displaces it in the direction of higher frequencies as compared 
with the peak for a standard Hnear solid, which has a maximum of 
0.5 at ~ r o= 1. A decrease in y leads to a smoother variat/on of 
the dynamic compliance. Thus, the parameter y characterizes the 

broadening and displacement of the retardation (relaxation) spec- 
trum. 

4. We will consider as kernels the exponential-fractional func- 
tions proposed by Rabomov [8]. These kernels are convenient in that 
their resolvents are exponential-fracr/onal functions of the same 
order. 

For example, taking the aftereffect kernel 

oo 

( -  i)'~ ( t / T ~ ) ~  (~1) 
,,=o r [ ~ ( n + l ) l  

find that its resolvent is the relaxation 

c~ 

l '  ['r (,~-~- i ) ]  (22) 
n~:O 

We note in passing that kernels (21) and (22) are equivalent to 
the theological equation of a standard linear solid with fractional 
derivatives with respect to time 

do (Z ! TE'rdVz / dE') =: e -c "czVdV8 / dt u (23) 

Using (21)-(23), we easily obtain 

(co'%)-'; + cos 
J ' = J ~  ; AJ , (24) 

J" = = AJ sin 
(o)'%)c + (co'%)-v + 2cos ~ (~o = V~',:), (25) 

tg 5 = AJ sin ~ (28) 
do (~T~)-v i-  doo (co%)c _~_ (J0 -F Joo) cos 

It is worth noting the total symmetry of Eqs. (21)-(26), which 
at y = 1 go over into the ordinary relations for a standard Iinear solid. 

In Fig. 3 we have plotted the j" = j" (j '), diagram for various 
y. This corresponds to Cole-Cole circle diagrams [9] with central 
angle y~r. The radius of each circle r is given by 

r = J/2 cosec (J/,2 ny) , (27) 
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i. e . ,  the radius of the circle diagram is determined only by the 
parameter y. 

Then it is easy to establish that the angle ~ = ~r 7/2 determines 
the slope of the tangent to each arc relative to the axis of abscissas 
at the point 0 and 1. The tangents themselves correspond to the 
Abel kernel. 

Thus, knowing y, we can draw the vector diagram for Rabomov 
kernels without additional computations. 
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Fig. 4 

It is clear from Fig. 4, which shows the frequency dependence 
of the real and imaginary parts of the compliance, that the para- 
meter y leads to broadening of the retardation (relaxation) spectrum. 

More detailed information on the use of exponential-fractional 
kernels to describe internal friction of the relaxational type is given 
in [I0]. 

Thus, the examples considered show that the singularity of ker- 
nels of the type (t - t) y-1 (0 < y __< 1 ) determines the angle 

= ~ry/2 at which as w ---, ~ the curve of the vector diagram inter- 
sects the axis of abscissas along which are plotted real values of 

the compliance (modulus). At y = 1 there is no singularity and 
the intersection is at right angles. 

This is particularly apparent when we investigate the so-called 
background, that is, the sharp increase of internal friction tg 5 with 
decrease in frequency (increase in temperature). From the phenom- 
enological standpoint, the background is attributable to the total re- 
laxation of the elastic modulus, which is reality is possible only for 

the shear modulus. Therefore, when the above equations are used 
describe the background, the elastic modulus should be interpreted 
as the shear modulus g,  which relaxes completely, i . e . ,  go = 0. In 
this case the Abel, Rzhanitsyn (19), and Rabotnov kernels lead to 
the same equation for the mechanical loss factor: 

tg6 = [(~'c~) ~ -~ cos~2I -I s in~ , (28) 

which at y = 1 goes over into the welt-known retation tg 6 = 1 / w % ,  
obtained from the ordinary Maxwell equation. 

It should be emphasized that the considerations leading to Eq. 
(28) indicate that the nature of the background has a purely retaxa- 
tional character unrelated with ~ny retardation process. 
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